
Pseudo Devices: User-Level Extensions
to the Sprite File System

Brent B. Welch
John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

Abstract
A pseudo-device is a mechanism in the Sprite network file system that lets a user-
level server process emulate a file or I/O device. Pseudo-devices are accessed like
regular files or devices, and they exist in the file system name space. Pseudo-devices
are implemented by transparently mapping client operations on the pseudo-device
into a request-response exchange with a server process. The interface to pseudo-
devices is general enough to be a transport mechanism for a user-level RPC system.
It also provides a stream-oriented interface with write-behind and read-ahead for an
asynchronous connection between clients and server. Sprite uses pseudo-devices to
implement at user level its terminal drivers, the internet protocol suite, and the X-11
window system server. The pseudo-device implementation provides as fast or faster
communication, both local and remote, than a UNIX UDP socket connection. †

April, 1988

1. Introduction

This paper describes pseudo-devices, a mechanism used to integrate user-level
server processes into the Sprite operating system’s distributed file system [Ousterhout88].
The distinguishing feature of pseudo-devices is that they appear in the file system name
space and behave like regular files or devices. However, the operations on a pseudo-
device are actually forwarded to a user-level process, called the server, which can imple-
ment them in any way it chooses. The motivation for pseudo-devices is to be able to
move services traditionally found in the operating system kernel out to user-level
processes. This keeps the size of the kernel down and it makes services easier to develop
hhhhhhhhhhhhhhhhhhhhhhhhhhh

† This work was supported in part by the Defense Advanced Research Projects Agen-
cy under contract N00039-85-C-0269, in part by the National Science Foundation under
grant ECS-8351961, and in part by General Motors Corporation.



and debug. Sprite uses pseudo-devices to implement several system services including
terminal drivers, the X windows server [Scheifler86], and the TCP/IP protocol family
[IP81].

There are two advantages to using pseudo-devices to access user-level services:
communication is via a traditional interface, and naming is via the existing file system
name space. Pseudo-devices are accessed with the same open(), read(), write(), iocon-
trol(), select(), and close() procedures used to access regular files and I/O devices.
Read() and write() provide a byte stream interface which can be fully asynchronous with
write-behind and read-ahead. Iocontrol() is synchronous and can be used as a transport
mechanism for a Remote Procedure Call (RPC) system.

Using pseudo-devices, there is no need to invent a new name space to support user-
level services. Names for pseudo-devices are protected, manipulated, and browsed in the
same way as for other kinds of files. The Sprite file system provides name transparency
across the network, so a pseudo-device can be accessed from any host in the network.

The remainder of the paper is organized as follows. Section 2 gives some back-
ground on the Sprite network operating system. Section 3 describes the pseudo-device
interface from a client’s point of view, and includes examples of services implemented as
pseudo-devices. Section 4 describes the server’s view of pseudo-devices and the imple-
mentation of the interface. Section 5 gives some performance measurements, including
comparisons with other systems. Section 6 describes related work. Section 7 gives a
summary and our conclusions.

2. Sprite Background

Sprite is a network operating system that we have developed from scratch at U.C.
Berkeley over the last few years. Its design has been influenced by three things: mul-
tiprocessors, local area networks, and large physical memories. To support execution on
a multiprocessor the Sprite kernel is multi-threaded internally, and Sprite supports shared
memory between cooperating user processes. To support networks, Sprite uses a custom
kernel-to-kernel RPC system [Welch86a] and a shared network file system that provides
location transparent access [Welch86b] to files and I/O devices around the network. To
exploit large physical memories, a distributed file caching scheme is used for high perfor-
mance file access in an environment of diskless workstations [Nelson88]. The Sprite
user interface is much like UNIX†, and for the purposes of this paper one can think of
Sprite as a UNIX with a transparent network file system. Pseudo-devices could easily be
implemented in a traditional UNIX kernel, and Section 6 describes some similar mechan-
isms that have been added to UNIX kernels.

3. Pseudo-device Clients

3.1. The Client Interface

Regular processes, called ‘‘clients’’, access a pseudo-device the same way they
access regular files and I/O devices. Open() names the pseudo-device and sets up a
hhhhhhhhhhhhhhhhhhhhhhhhhhh

UNIX is a trademark of AT&T.

2



stream to it. Close() releases the stream. Write() and read() transfer data to and from the
pseudo-device. Select() is used to wait until the pseudo-device is ready for I/O. Iocon-
trol()† is used for operations particular to the pseudo-device. These operations are identi-
cal, both in syntax and semantics, to the operations used for other files, so the implemen-
tation of the pseudo-device is transparent to the client.

3.2. Examples of Pseudo-Device Clients

Pseudo-devices are currently used for three purposes in Sprite: terminal drivers, net-
work protocols, and window server communication. For example, for each terminal
there is a pseudo-device and corresponding server process. Client processes make read()
and write() requests on the pseudo-device instead of the terminal’s serial line. The server
implements the client’s requests by manipulating the terminal’s serial line in raw mode,
and provides the full suite of 4.3 BSD ioctl() calls and line-editing functions such as
backspace and word erase. The terminal driver is built as a library package so the same
code is also used for managing rlogin streams and terminal-emulator windows. In this
case, the pseudo-device mechanism provides a generalization of the 4.3BSD pseudo-tty
facility.

The second use of pseudo-devices is to implement network protocols at user-level,
TCP/IP in particular. While Sprite uses a custom network RPC protocol for kernel-to-
kernel communication [Welch86a], the TCP/IP protocols are used to interface to non-
Sprite systems, i.e. for mail service, remote logins, and remote file transfer. Client
processes read and write a pseudo-device to use TCP, and the user-level server process
implements the full protocol by reading and writing packets over the raw ethernet. In
this case the internet pseudo-device provides the transport mechanism for a remote-
procedure-call-like facility. A library package used by clients emulates the socket

X Server

Client 1

Client 2

‘‘/hosts/sage/X0’’
‘‘/dev/display’’

‘‘/dev/keyboard’’

Figure 1. The pseudo-device ‘‘/hosts/sage/X0’’ is used by clients of the window system
to access the X window server on workstation ‘‘sage’’. The server, in turn, has access to
the display and keyboard.

hhhhhhhhhhhhhhhhhhhhhhhhhhh
† Iocontrol() is a super-set of the standard UNIX ioctl() system call. Ioctl() takes only a

command ID and a buffer as arguments. Iocontrol() takes a command ID, and 4 arguments that
specify the size, and location, of an input and output buffers.

3



operations by issuing iocontrols on the internet pseudo-device. The internet server
defines iocontrol operations for socket calls like bind(), listen(), connect() and accept().
The iocontrol input buffer is used to pass arguments from the client to the server, where
the socket procedure is executed. The output buffer is then used to return results back to
the client. Each library procedure in the client is simply a stub that copies arguments and
results into and out of buffers and invokes the iocontrol.

The third use of pseudo-devices is to implement the X window server at user-level.
For each display in the network there is a pseudo-device and a server process. Access to
remote displays is not a special case because the file system provides network tran-
sparency. The X server controls the display and multiplexes the mouse and keyboard
among clients, as shown in Figure 1. The clients use write() to issue commands to the X
server, and read() to get mouse and keyboard input. A buffering system, which is
described in detail in Section 4.2, provides an asynchronous interface between the win-
dow server and its clients to reduce context switching overhead.

4. Pseudo-device Server Implementation

The server for a pseudo-device is much like the server for any RPC system: it waits
for a request, does a computation, and returns an answer. In this case it is the Sprite ker-
nel that is making requests on behalf of a client process. The kernel takes care of bun-
dling up the client’s parameters, communicating with the server, and unpackaging the
server’s answer so that the mechanism is transparent to the client. The following sub-
sections describe the implementation of this in more detail, including the I/O streams
used by the server, the request-response protocol between the kernel and the server, and a
buffering system used to improve performance.

4.1. The Server’s Interface

The server for a pseudo-device is established when it opens the pseudo-device with
the PDEV_SERVER flag. This open returns a control stream to the server. The server
listens on the control stream for messages issued by the kernel each time a client opens
the pseudo-device. These messages identify a new request stream the server gets for use
in communicating with the client. Thus the server process has one control stream used to
wait for new clients, and one request stream for each open() by a client process. These
are shown in Figure 2.

The server accepts or rejects the client’s open attempt when it handles the first
request (an open) on a request stream. (Details of handling requests are given in the next
sub-section.) If a client process subsequently forks (creates a new process), the new pro-
cess shares the stream to the pseudo-device, and the server is not contacted. This is much
cheaper than creating a new request stream each time a client process forks, and it main-
tains the UNIX semantics of shared streams. To the server, however, this means that
there may be more than one client process using a request stream.

4.2. Request-Response

The Sprite kernel communicates with the server using a request-response protocol.
The synchronous version of the protocol is described first, and then extensions to allow
asynchronous communication are described. For each kernel call made by a client, the
kernel issues a request message to the server and blocks the client process waiting for a

4



request streamclient stream

Server
Client 1

Sprite Kernel
Control stream

Client 2

pseudo-device

Figure 2. The control stream originates from the kernel and is used to pass new request
streams to the server process. The client’s streams are connected to corresponding re-
quest streams by a request-response protocol, which is represented by the black box in
the figure.

reply message. Each request message includes the operation (open, close, read, write,
iocontrol) and its associated parameters, which may include a block of data. Table 1
describes the contents of the request messages. The server replies to requests by making
an iocontrol() call on the request stream. The iocontrol specifies the return code for the
client’s system call, and the size and location of any return data for the call (i.e. data
being read). The kernel copies the reply data directly from the server’s buffer to the
client’s.

iiiiiiiiiiiiiiiiiiiiiiiiiii
Request Message Contentsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

All Messages Operation ID
Process ID
Input size
Reply sizeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

open User ID
(no data)iiiiiiiiiiiiiiiiiiiiiiiiiii

read Byte offset
(no data)iiiiiiiiiiiiiiiiiiiiiiiiiii

write Byte offset
Data blockiiiiiiiiiiiiiiiiiiiiiiiiiii

iocontrol Command ID
Data blockiiiiiiiiiiiiiiiiiiiiiiiiiii

close (nothing)iiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1. All request messages have a standard header that indicates the operation (open,
read, write, iocontrol, close), the client’s process ID, the the size of the input and result
data. Additionally, each operation has its own specific parameters and, optionally, a
variable size block of data.

5



The kernel passes request messages to the server using a request buffer, which is in
the server process’s address space, and an associated pair of pointers, firstByte and last-
Byte, that are kept in the kernel and indicate valid regions of the buffer. With this buffer-
ing scheme the server does not read the request messages from its request stream.
Instead, the kernel puts request messages directly into the request buffer, and updates
lastByte to reflect the addition of the messages. The server then reads a short message
from the request stream that has the current values of firstByte and lastByte. The read
returns only when there are new messages in the request buffer. After processing the
message(s) found between firstByte and lastByte the server updates firstByte with an
iocontrol. This buffering scheme permits the kernel to place several messages in the
request buffer without waiting for each to be processed; the server can then process all of
them at once, without requiring a context switch for each.

The buffering mechanism supports asynchronous writes (‘‘write-behind’’) at the
server’s option. If the server specifies that write-behind is to be permitted for the stream,
then the kernel will allow the client to proceed as soon as it has placed the write request
in the server’s buffer. In enabling write-behind, the server guarantees that it is prepared
to accept all data written to the stream; the kernel always returns a successful result to
clients. The advantage of write-behind is that it allows the client to make several
requests without the need for a context switch into and out of the server for each. On
multiprocessors, write-behind permits concurrent execution between the client and
server.

As a convenience to servers, the kernel does not wrap request messages around the
end of the request buffer. If there is insufficient space at the end of the buffer for a new
request, then the kernel blocks the requesting process until the server has processed all
the requests in the buffer. Once the buffer is empty the kernel places the new request at
the beginning of the buffer, so that it will not be split into two pieces. This is shown in
Figure 3. No single request may be larger than the server’s buffer: oversize writes are
split into multiple requests, and oversize iocontrols are rejected. If a write is split into
several requests, the request stream is locked to preserve the atomicity of the original
write.

Read performance can be optimized by using a read-ahead buffer. The server fills
the read-ahead buffer, which is again in its own address space, and the kernel copies data
out of it without having to switch out to the server process. Synchronization is done with
firstByte and lastByte pointers as with the request buffer. In this case the server process
updates lastByte after it adds data, and the kernel moves firstByte to reflect client reads.

To summarize the buffering scheme, the server has a request buffer associated with
each request stream, and possibly a read-ahead buffer for each stream. These buffers are
allocated by the server, and an iocontrol() call is used to tell the kernel the size and loca-
tion of each buffer. The kernel puts request messages directly into the request buffer.
The server’s read() call on the request stream returns the current values of firstByte and
lastByte for both buffers. The server updates the pointers (the request firstByte and
read-ahead lastByte) by making an iocontrol() on the request stream. The iocontrol calls
available to the server are summarized in Table 2.

6



r3

r2

r1

(a)

firstByte

lastByte
r3

r2

r1

r4

(b) (c)

r5

(d)

Figure 3. This figure shows the way the firstByte and lastByte pointers into the request
buffer are used. Initially there are 3 outstanding requests in the buffer. The subsequent
pictures show the addition of a new request, an empty buffer (the server has processed
the requests), and finally the addition of a new request back at the beginning of the
buffer.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Server I/O Control Operationsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

IOC_PDEV_SET_BUFS Declare request and read-ahead buffers
IOC_PDEV_WRITE_BEHIND Enable write-behind on the pseudo-deviceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
IOC_PDEV_SET_BUF_PTRS Set request firstByte and read-ahead lastByte
IOC_PDEV_REPLY Give return code and the address of the results
IOC_PDEV_READY Indicate the pseudo-device is ready for I/Oiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c

cc
c
c
c
c
c

Table 2. The server uses these iocontrol() calls to complete its half of the request-
response protocol. The first two operations are invoked to set up the request buffer, and
the remaining three are used when handling requests.

4.3. Waiting for I/O

Normal I/O devices include a mechanism for blocking processes if the device isn’t
ready for input (because no data is present) or output (because the output buffer is full).
To be fully general, pseudo-devices must also include a blocking mechanism, and the
server must be able to specify whether or not the device is ‘‘ready’’. One possibility
would be for the kernel to make a request of the server whenever it needs to know
whether a pseudo-device is ready, such as during read, write, and select† calls. We ini-
tially implemented pseudo-devices this way. Unfortunately, it resulted in an enormous
number of context switches into and out of server processes. The worst case was a client
process issuing a select call on several pseudo-devices; most of the time most of the
pseudo-devices were not ready, so the servers were invoked needlessly.
hhhhhhhhhhhhhhhhhhhhhhhhhhh

† The select() call is used to wait for several I/O streams at once. Each stream is identified
by a small integer, and select takes as an argument a bitmask that has a bit set corresponding to
each stream that is being waited on. Select is used to wait for streams to become readable, writ-
able, or to have exceptional conditions.

7



We subsequently re-implemented pseudo-devices so that the kernel maintains three
bits of state information for each pseudo-device, corresponding to the readable, writable,
and exception masks for the select kernel call. The pseudo-device server updates these
bits with each reply iocontrol and can also change them with the IOC_PDEV_READY
iocontrol. This mechanism allows the kernel to find out whether a pseudo-device is
ready without contacting the server and resulted in a significant performance improve-
ment for select. In addition, the server can return the EWOULDBLOCK return code
from a read or write request; the kernel will take care of blocking the process (unless it
has requested non-blocking I/O) and will reawaken the process and retry its request when
the pseudo-device becomes ready again. Thus the pseudo-device server determines
whether or not the device is ready, but the kernel handles the logistics of blocking and
unblocking processes.

4.4. Network Transparency

The Sprite file system provides a network-wide name space and remote device
access so the pseudo-device server is not constrained to execute on the same host as its
clients. An operation by a client on a remote pseudo-device is first shipped to the host
running the pseudo-device server using the kernel’s network RPC. The kernel RPC stub
on the server’s host then calls the regular pseudo-device routines to carry out the
request-response exchange with the pseudo-device server. This is all transparent to both
the client and the server processes.

4.5. Crash recovery

The client process is dependent on the server process to faithfully implement the
pseudo-device. If the server hangs without returning a reply, then the client will also
hang until the server process is killed or replies. If either the client or the server process
dies, or their host crashes, then their stream to the pseudo-device automatically gets
closed. When the client closes, the server gets a regular close request. If the server dies
then current or future attempts by the client to use its stream will fail. Note that this
applies even when write-behind is enabled.

5. Performance Review

This section of the paper presents a few performance measurements for pseudo-
devices. There are a number of contributions to the communication cost: system call
overhead, context switching, copy costs, network communication, synchronization, and
other software overhead. For comparison, UNIX TCP and UDP sockets, and pipes under
both Sprite and UNIX were also measured. The hardware used in the tests is a Sun 3/75
with 8 megabytes of main memory, and the UNIX is SunOS 3.2.

Each of the benchmarks uses some communication mechanism to switch back and
forth between the client and the server process. Each communication exchange requires
four kernel calls and two context switches. With pseudo-devices, the client makes one
system call and gets blocked waiting for the server. The pseudo-device server makes
three system calls to handle each request: one to read the request stream, one to make a
reply, and one to update the firstByte pointer into the request buffer. With the other
mechanisms the client makes two system calls: one to prod the server and another to wait
for a response. The server makes two system calls as well: one to respond to the client,

8



blocked

executing

ServerClient

Send()

Receive()

Receive()

Send()

Receive() time

Figure 4. This shows the flow of control between two processes that exchange mes-
sages. Initially the server is waiting for a message from the client. The client sends the
message and then blocks waiting for a reply. The client executes again after the server
waits for the next request. Each benchmark has a similar structure, although different
primitives are used for the Send() and Receive() operations shown here.

and one more to wait for the next request. The flow of control is shown in Figure 4.

Table 3 presents the elapsed time for a round-trip between processes for each
mechanism when sending little or no data. The measurements were made by timing the
cost of several thousand round-trips and averaging the results. The measured time
includes time spent in the user-level processes. In the second half of the table the client

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Process Communication Latencyiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(microseconds)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Benchmark Bytes Sprite UNIXiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PipeExchange 1 1910 2180iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-Device 0 2050 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-Device 1 2440 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
UDP socket 1 - 1940iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TCP socket 100 - 5180iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote Pdev 0 4260 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote Pdev 1 5000 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote UDP 1 - 4870iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Remote TCP 100 - 7980iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3. The results of various benchmarks running on a Sun 3/75 workstation under
Sprite and/or UNIX. Each benchmark involves two communicating processes: PipeEx-
change passes one byte between processes using pipes, Pseudo-Device does a null
iocontrol() call on a pseudo-device, UDP exchanges 1 byte using a UNIX UDP datagram
socket, and TCP exchanges 100 bytes (to avoid buffering in the protocol) using a UNIX
TCP stream socket.

9



and server processes are on different hosts so there are network costs.

The difference between exchanging zero bytes and one byte using pseudo-devices
highlights the memory mapping overhead incurred in the pseudo-device implementation.
When the kernel puts a request into the server’s buffer it is running on behalf of the client
process. On the Sun hardware only one user process’s address space is visible at a time,
so it is necessary to map the server’s buffer into the kernel’s address space before copy-
ing into it. Similarly, when the server returns reply data the client’s buffer must be
mapped in. The mapping is done twice each iteration because data is sent both direc-
tions, and obvious optimizations, i.e. caching the mappings, have not been implemented.

0 512 1024 1536 2048
0

5

10

15

20

Bytes

M
i
l
l
i
s
e
c
o
n
d
s

Remote TCP (UNIX)

Remote UDP (UNIX)

Remote Pdev (Sprite)
Local TCP (UNIX)

Local UDP (UNIX)
Local Pdev (Sprite)
Local Pipe (Sprite)

Figure 5. Elapsed time per exchange vs. bytes transferred, local and remote, with dif-
ferent communication mechanisms: Pseudo-devices, Sprite pipes (local only), and UNIX
UDP and TCP sockets. The bytes were transferred in both directions. The shape of the
UDP and TCP lines is due to the buffering scheme used in UNIX; chains of 112-byte
buffers are used until a message is 1024 bytes, at which point chains of 1024-byte
buffers are used.

10



Figure 5 shows the performance of the various mechanisms as the amount of data
varies. Data is transferred in both directions in the tests, and the slope of each line gives
the per-byte handling cost. The graphs for UDP and TCP are non-linear due to the
buffering scheme used in UNIX; chains of 112 byte buffers are used until a message is
1024 bytes, at which point chains of 1024 byte buffers are used.

The Sprite mechanisms have nearly constant per-byte costs. The unrolled byte copy
routine used by the kernel takes about 200 microsends per kbyte. Data is copied four
times using pipes (there is an intermediate kernel buffer) and the measured cost is about
800 microsends per kbyte. Data is copied twice using pseudo-devices, and we expect a
per-kbyte cost of 400 microseconds. This is obtained when transferring between 1-kbyte
and 2-kbytes, but we are not sure of the reason for the slightly higher cost at smaller
transfer sizes.

In the remote case, the pseudo-device implementation uses one kernel-to-kernel
RPC to forward the client’s operation to the server’s host. This adds about 2.2 msec to
the base cost when no data is transferred, and about 4.3 msec when 1 kbyte is transferred
in both directions. There is a jump in the remote pseudo-device line in Figure 5 between
1280 and 1536 bytes when an additional ethernet packet is needed to send the data.

The effects of write-behind buffering can be seen by comparing the costs of writing
a pseudo-device with and without write-behind. The results in Table 4 show a 60%
reduction in elapsed times for small writes. This speed-up is due to fewer context
switches between the processes, and because the server makes one less system call per
iteration because it doesn’t return an explicit reply. The table also gives the optimal
number of context switches possible, which is a function of the size of each request, and
the actual number of context switches taken during 1000 iterations. Preemptive schedul-
ing causes extra context switches. The server has a 2048-byte request buffer and there is
a 40-byte header on requests, so, for example, 28 write messages each with 32 bytes of
data will fit into the request buffer, but only one write message with 1024 bytes of data
will fit. A scheduling anomaly also shows up at 1024 bytes; the scheduler preempts the
client too soon so there are twice as many context switches as expected.

6. Related Work

There are a number of features in existing operating systems that provide similar
functionality to pseudo-devices, or that can be used to build up similar functionality.
They fall into three categories, byte-stream mechanisms, message-based or RPC systems,
and device-like mechanisms.

Message systems, including RPC implementations, are useful for implementing ser-
vices outside the operating system kernel. However, they are usually not integrated into
the file system name space, so an extra name service is required for connecting servers
and clients. One good approach to this kind of system is found in the V-system. It has a
uniform I/O interface that can be used to connect processes [Cheriton87]. To properly
integrate itself into the V distributed name space, however, each server must handle nam-
ing operations as well. The pseudo-device interface is simpler in this respect as the ker-
nel takes care of naming.

11



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-Device Write vs. Write-behindiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(Bytes vs. Microseconds & Context Switches)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Size Write Write-Behind Ctx Swtch Opt Swtchiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

32 2330 910 40 36iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
64 2370 940 63 53iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

128 2400 1000 100 84iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
256 2450 1120 178 167iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
512 2590 1420 382 334iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1024 3030 2660 2000 1000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 4. The elapsed time in microseconds for a write call with and without write-
behind, and the number of context switches taken during 1000 iterations of the write-
behind run vs. the optimal number of switches. The write-behind times reflect a smaller
number of context switches because of write-behind. The optimal number of switches is
not obtained because the scheduler preempts the client before it completely fills the re-
quest buffer. At 1024 bytes only one request fits into the server’s request buffer, but
there are extra context switches due to a bug in the scheduler.

Byte-stream mechanisms, such as UNIX pipes, UNIX System V named pipes
[Dolotta80], UNIX pseudo-terminals, and 4.3 BSD sockets, are limited to providing a
reliable byte stream between processes. Usually any extra processing, like terminal line
editing or a network protocol, is implemented inside the kernel. Pseudo-devices move
the processing out of the kernel, and allow for more general operations via iocontrol().

The Version Eight stream facility [Ritchie84] also provides byte stream connections
between processes, but it can be extended to allow emulation of an I/O device by a user-
level process [Presotto85]. One extension converts iocontrol() calls into special mes-
sages that appear in the byte stream to the server process. Another extension lets the
server ‘‘mount’’ a stream on a file and return new streams to clients that open the file.
This achieves the name transparency that pseudo-devices have, and lets the server multi-
plex itself among several clients. The main difference between pseudo-devices and the
stream facility (aside from the underlying implementation) is the way the interfaces are
used; the stream facility is designed to support different combinations of kernel-resident
processing units, whereas the pseudo-device mechanism is oriented solely towards user-
level implementation of services.

The watchdog facility proposed by Bershad and Pinkerton [Bershad88] provides a
different way to extend the UNIX file system, but it can be used to achieve nearly the
same effect as pseudo-devices. A ‘‘watchdog’’ process can attach itself to a file or direc-
tory and take over some, or all, of the operations on the file. The watchdog process is an
un-privileged user process, but the interface is implemented in the kernel so the
watchdog’s existence is transparent. Watchdogs may either wait around for guarded files
to be opened, or they are created dynamically at open-time by a master watchdog pro-
cess. The main differences between the systems are that pseudo-devices provide the
server with an asynchronous read-write interface to reduce overhead, and the watchdog
process can handle subsets of file operations.

12



7. Conclusion

Pseudo-devices provide a way to integrate a user-level server process into Sprite’s
distributed file system. By making the service appear as a special I/O device, the existing
open-close-read-write interface is retained. Pseudo-devices are named and protected just
like other files. Byte stream communication is via read() and write(), and read-ahead and
write-behind can be used for asynchronous communication. Iocontrol() is available for
operations specific to the pseudo-device, and can be used as the transport mechanism for
an RPC system. The standard interface also means that the implementation of any
specific pseudo-device could be moved into the kernel for better performance, or even
implemented in hardware, without having to change any clients.

The performance of the implementation is acceptable at this point, although some
further tuning may be possible. The buffering system represents our initial attempt to
improve the performance and robustness of the system over an earlier pipe-based imple-
mentation. There is additional mapping overhead associated with copying data from one
user process to another, so that pseudo-devices are not quite as fast as regular Sprite
pipes. However, the request buffer is relatively simple for the server to manage, and the
fact that it is pre-allocated allows some optimizations in the server.

We currently use pseudo-devices to implement terminal drivers, the X window
server, and the TCP/IP protocol family. Future work includes extending the pseudo-
device mechanism to a ‘‘pseudo-file system’’ mechanism that can be used to tran-
sparently access foreign file systems.

References

Bershad88. B. N. Bershad and C. B. Pinkerton, ‘‘Watchdogs - Extending the UNIX File System’’,
USENIX Association 1988 Winter Conference Proceedings, Feb. 1988, 267-275.

Cheriton87. D. R. Cheriton, ‘‘UIO: A uniform I/O interface for distributed systems’’, ACM Trans.
on Computer Systems 5, 1 (Feb. 1987), 12-46.

Dolotta80. T. A. Dolotta, S. B. Olsson and A. G. Petrucelli, Unix User’s Manual, Release 3.0,
Bell Laboratories, Murray Hill, NJ, June 1980.

Nelson88. M. Nelson, B. Welch and J. Ousterhout, ‘‘Caching in the Sprite Network File
System’’, Trans. Computer Systems 6, 1 (Feb. 1988), 134-154.

Ousterhout88. J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch, ‘‘The Sprite
Network Operating System’’, IEEE Computer 21, 2 (Feb. 1988), 23-36.

IP81. J. Postel, ‘‘Internet Protocol’’, RFC 791, Sep. 1981.

Presotto85. D. L. Presotto and D. M. Ritchie, ‘‘Interprocess Communication in the Eighth Edition
Unix System’’, USENIX Association 1985 Summer Conference Proceedings, June
1985, 309-316.

Ritchie84. D. Ritchie, ‘‘A Stream Input-Output System’’, The Bell System Technical Journal 63,
8 Part 2 (Oct. 1984), 1897-1910.

Scheifler86. R. W. Scheifler and J. Gettys, ‘‘The X Window System’’, ACM Trans. on Graphics 5,
2 (Apr. 1986), 79-109.

Welch86a. B. B. Welch, ‘‘The Sprite Remote Procedure Call System’’, Technical Report
UCB/Computer Science Dpt. 86/302, University of California, Berkeley, June 1986.

Welch86b. B. B. Welch and J. K. Ousterhout, ‘‘Prefix Tables: A Simple Mechanism for Locating
Files in a Distributed Filesystem’’, Proc. of the 6th ICDCS, May 1986, 184-189.

13


